STRICTLY IRREDUCIBLE *-REPRESENTATIONS OF BANACH *-ALGEBRAS(1)

ΒY

BRUCE A. BARNES

ABSTRACT. In this paper strictly irreducible *-representations of Banach *-algebras and the positive functionals associated with these representations are studied.

Introduction. Let A be a Banach *-algebra, and let $a \to \pi(a)$ be a representation of A on a Hilbert space \mathcal{H} . A subspace $\mathcal{K} \subset \mathcal{H}$ is π -invariant if $\pi(a)\mathcal{K}$ $\subset K$ for every $a \in A$. The representation π is irreducible if π is nonzero and the only closed π -invariant subspaces of \mathcal{H} are \mathcal{H} and $\{0\}$. π is strictly irreducible if π is nonzero and the only π -invariant subspaces of $\mathcal H$ are $\mathcal H$ and $\{0\}$. In the case where A is a B*-algebra, R. V. Kadison proved the remarkable result that every irreducible *-representation of A is strictly irreducible [6, Theorem 1]. Aside from this theorem of Kadison, there are only a few minor isolated results concerning strictly irreducible * representations of Banach *-algebras. In this paper we study strictly irreducible *-representations and certain positive functionals associated with these representations which we call strictly pure states (a positive functional α on A is a strictly pure state if α is a pure state and the *-representation of A determined by α is strictly irreducible). We give necessary and sufficient conditions that a pure state of A be strictly pure in $\S 2$. In $\S \S 3$ and 4 some of the special properties of strictly pure states and strictly irreducible representations are presented. In \$5 some examples of Banach *-algebras with the property that every irreducible *-representation is strictly irreducible are provided.

1. Notation and preliminaries. Throughout this paper A denotes a Banach *-algebra. A linear functional α on A is positive if $\alpha(a^*a) \geq 0$ for all $a \in A$. When α is a positive functional on A, let

$$M(\alpha) = \sup \left\{ \frac{|\alpha(a)|^2}{\alpha(a^*a)} \middle| a \in A, \ \alpha(a^*a) \neq 0 \right\}.$$

Received by the editors July 12, 1971.

AMS 1970 subject classifications. Primary 46K10, 46H05.

Key words and phrases. Strictly irreducible *-representations, pure states.

⁽¹⁾ This research was partially supported by NSF grant GP-20226.

The set of all positive functionals α on A with the properties $\alpha(a^*) = \alpha(a)$ for all $a \in A$ and $M(\alpha) < +\infty$, we denote by $\mathcal{P}.$ \mathcal{P}_1 is the set of all $\alpha \in \mathcal{P}$ with $M(\alpha) \leq 1$. Let A_h be the real linear space of hermitian elements of A. \mathcal{P}_1 is a convex subset of A_b^* , the dual space of A_b , and \mathcal{P}_1 is compact in the weak *-topology on A_h^* (see [4, Theorem (21.33), p. 328]). The extreme points of \mathcal{P}_1 are called pure states. For $\alpha \in \mathcal{P}$, the left kernel of α , denoted K_{α} , is the set of all $a \in A$ such that $\alpha(a^*a) = 0$. K_a is a closed left ideal of A. The quotient space $A - K_a$ is a pre-Hilbert space in the inner-product $(a + K_a, b + K_a) =$ $a(b^*a)$. Let \mathcal{H}_a denote the Hilbert space which is the completion of this pre-Hilbert space. A *-representation $a \to \pi_a(a)$ of A on \mathcal{H}_a is constructed by first defining $\pi_a(a)(b + K_a) = ab + K_a$ for $b + K_a \in A - K_a$. Then $\pi_a(a)$ is a bounded operator on $A - K_a$ which extends uniquely to a bounded operator on \mathcal{H}_a (also denoted by $\pi_a(a)$. For details of this construction see the proof of Theorem (21.24) in [4]. It is a well-known theorem that $\alpha \in \mathcal{P}$ is a pure state of A if and only if $M(\alpha) = 1$ and the *-representation π_a is irreducible on \mathcal{H}_a [4, Theorem (21.34), p. 328]. We define $\alpha \in \mathcal{P}$ to be a strictly pure state of A if α is a pure state of A and $a \to \pi_a(a)$ is strictly irreducible on \mathcal{H}_a .

When X is a normed linear space with norm $\|\cdot\|$ and Y is a closed subspace of X, then the quotient norm $\|\cdot\|_q$ on the quotient space X-Y is defined as usual by

$$||x + Y||_a = \inf \{||x - y|| | |y \in Y\}.$$

 ${\mathcal H}$ is always a Hilbert space and ${\mathcal B}({\mathcal H})$ is the algebra of all bounded operators on ${\mathcal H}.$

2. Necessary and sufficient conditions for a pure state to be strictly pure. When $\alpha \in \mathcal{P}$, the quotient space $A - K_{\alpha}$ is an inner product space with inner product defined by $(a + K_{\alpha}, b + K_{\alpha}) = \alpha(b^*a)$. Let $|a + K_{\alpha}|_2 = (a + K_{\alpha}, a + K_{\alpha})^{\frac{1}{2}} = \alpha(a^*a)^{\frac{1}{2}}$. We prove that a pure state α of A is strictly pure if and only if $A - K_{\alpha}$ is complete in the norm $|a + K_{\alpha}|_2$.

Theorem 2.1. Assume that A is a Banach *-algebra and that α is a pure state of A. Then α is a strictly pure state of A if and only if $A - K_{\alpha}$ is complete in the norm $|a + K_{\alpha}|_2 = \alpha(a*a)^{1/2}$. Also when α is a strictly pure state of A, then K_{α} is a modular maximal left ideal of A.

Proof. Assume first that α is a strictly pure state of A. By the construction of \mathcal{H}_{α} , $A - K_{\alpha}$ is an invariant subspace for $\pi_{\alpha}(a)$ whenever $a \in A$. Then $\mathcal{H}_{\alpha} = A - K_{\alpha}$, so that $A - K_{\alpha}$ is complete in the norm $|a + K_{\alpha}|_{2}$.

Conversely assume that $A-K_{\alpha}$ is complete in this norm. We prove first that the two norms $\|\cdot\|_2$ and $\|\cdot\|_q$ are equivalent on $A-K_{\alpha}$. By the Closed Graph Theorem it suffices to prove that $\|\cdot\|_q$ dominates $\|\cdot\|_2$. This is exactly the same

as proving that the identity map $a+K_{\alpha}\to a+K_{\alpha}$ is a continuous map from $(A-K_{\alpha'}\|\cdot\|_q)$ onto $(A-K_{\alpha'}\|\cdot\|_2)$. Again using the Closed Graph Theorem, it suffices to show that this map is closed. Therefore assume that $\{a_n\}\subset A,\ a\in A,\ \|a_n+K_{\alpha}\|_q\to 0,\ \text{and}\ \|(a_n-a)+K_{\alpha}\|_2\to 0.$ Then there exists a sequence $\{k_n\}\subset K_{\alpha}$ such that $\|a_n+k_n\|\to 0$. Therefore $\|a^*a_n+a^*k_n\|\to 0$, and this implies $\alpha(a^*a_n)=\alpha(a^*a_n+a^*k_n)\to 0.$ But also $|\alpha(a^*(a_n-a))|=|((a_n-a)+K_{\alpha'}a+K_{\alpha})|\leq |(a_n-a)+K_{\alpha}|_2|a+K_{\alpha}|_2\to 0.$ Therefore $\alpha(a^*a)=0$, so that $a+K_{\alpha}=0$.

Now define a functional $\overline{\alpha}$ on the Hilbert space $\mathcal{H}_{\alpha} = A - K_{\alpha}$ by $\overline{\alpha}(a + K_{\alpha}) = \alpha(a)$. Since K_{α} is contained in the null space of α , $\overline{\alpha}$ is well defined. Also,

$$\|\overline{\alpha}\|^2 = \sup \left\{ \frac{|\alpha(a)|^2}{\alpha(a^*a)} \middle| a \in A, \alpha(a^*a) \neq 0 \right\} = M(\alpha) = 1.$$

Since $A - K_{\alpha}$ is a Hilbert space, there exists $v \in A$ such that $\overline{\alpha}(a + K_{\alpha}) = (a + K_{\alpha}, v + K_{\alpha}) = \alpha(v^*a)$ for all $a \in A$. Therefore $\alpha(a) = \alpha(v^*a)$ for all $a \in A$. Given any $a \in A$,

$$\alpha((a(1-\nu))^*(a(1-\nu))) = \alpha(a^*a(1-\nu)) - \alpha(\nu^*a^*a(1-\nu)) = 0.$$

Therefore $A(1-v) \subset K_{\alpha}$, so that K_{α} is a modular left ideal. Let K be a maximal left ideal of A such that $K_{\alpha} \subset K$. Set $M = \{b + K_{\alpha} | b \in K\}$. M is a proper π_{α} -invariant subspace of $\mathcal{H}_{\alpha} = A - K_{\alpha}$. Furthermore M is $\|\cdot\|_{q}$ -closed. Therefore by the result of the previous paragraph, M is $\|\cdot\|_{2}$ -closed. It follows that $K_{\alpha} = K$. Then since K_{α} is a maximal modular left ideal of A, $\pi_{\alpha}(A)$ acts strictly irreducibly on $\mathcal{H}_{\alpha} = A - K_{\alpha}$

Every Banach *-algebra A has an algebra pseudonorm called the Gelfand-Naimark pseudonorm. We denote this pseudonorm by |a|, $a \in A$. This pseudonorm has the properties:

- (1) $|a^*a| = |a|^2$ for all $a \in A$.
- (2) $|\alpha(a)| \leq M(\alpha)|a|$ whenever $\alpha \in \mathcal{P}$, $a \in A$.
- (3) The *-radical of A is the set of all $a \in A$ such that |a| = 0. See [8, p. 226] for the details of these results. We prove next that a pure state α of A is strictly pure if and only if $|a + K_{\alpha}|_q = \inf\{|a + k| \mid k \in K_{\alpha}\}$ is a complete norm on $A K_{\alpha}$.

Theorem 2.2. Let $|\cdot|$ denote the Gelfand-Naimark pseudonorm on A. Then a pure state α of A is strictly pure if and only if $|a+K_{\alpha}|_q$ is a complete norm on $A-K_{\alpha}$.

Proof. For convenience we assume in the proof that A is reduced (i.e. the *-radical of A is 0). This assumption can be made with no loss of generality. In this case $|\cdot|$ is a norm on A with the B*-property by (1) and (3) above. Let B denote the B*-algebra which is the completion of A in the norm $|\cdot|$. Let α

be a pure state of A. By (2) above α is $|\cdot|$ -continuous. Therefore α has a unique extension $\widetilde{\alpha}$ to B. It is easy to verify that $\widetilde{\alpha}$ is a pure state of B.

Now assume that α is a strictly pure state of A. Let $\operatorname{cl}(K_{\alpha})$ denote the $|\cdot|$ -closure of K_{α} in B. If $\operatorname{cl}(K_{\alpha}) \neq K_{\widetilde{\alpha}}$, then by [8, Theorem (4.9.8), p. 251] there exists a pure state $\widetilde{\beta}$ of B with $\operatorname{cl}(K_{\alpha}) \subset K_{\widetilde{\beta}}$ and $\widetilde{\alpha} \neq \widetilde{\beta}$. Let β be the restriction of $\widetilde{\beta}$ to A. $K_{\alpha} \subset K_{\beta}$ and therefore $K_{\alpha} = K_{\beta}$. By a result we prove in the next section, Theorem 3.2, it follows that $\alpha = \beta$. But then $\widetilde{\alpha} = \widetilde{\beta}$, a contradiction. Therefore $\operatorname{cl}(K_{\alpha}) = K_{\widetilde{\alpha}}$. By Kadison's theorem $\widetilde{\alpha}$ is a strictly pure state of B. Then as noted in Theorem 2.1 there exists M > 0 such that

$$M\widetilde{\alpha}(b^*b)^{1/2} \ge |b + K_{\widetilde{\alpha}}|_{q}$$
 for all $b \in B$.

Also using (2) above we have, for $a \in A$, $k \in K_a$,

$$|a + K_a|_2 = \alpha((a + k)^*(a + k))^{1/2} \le |(a + k)^*(a + k)|^{1/2} = |a + k|.$$

Therefore $|a + K_a|_2 \le |a + K_a|_a$. Then for all $a \in A$,

$$M|a + K_{\alpha}|_{2} = M\widetilde{\alpha} (a^{*}a)^{\frac{1}{2}} \ge |a + K_{\alpha}|_{q} = |a + K_{\alpha}|_{q} \ge |a + K_{\alpha}|_{2}.$$

The norm $|a + K_{\alpha}|_2$ is complete on $A - K_{\alpha}$ by Theorem 2.1. Therefore $|a + K_{\alpha}|_q$ is a complete norm on $A - K_{\alpha}$.

Conversely assume that $|a+K_{\alpha}|_q$ is a complete norm on $A-K_{\alpha}$. Given $b\in K_{\alpha}$, choose $\{b_n\}\subset A$ such that $|b_n-b|\to 0$. Then $|(b_n-b_m)+K_{\alpha}|_q\to 0$ as $n,m\to +\infty$. Therefore there exists $a\in A$ such that $|(b_n-a)+K_{\alpha}|_q\to 0$. Choose $\{k_n\}\subset K_{\alpha}$ such that $|b_n-a+k_n|\to 0$. Then $|b-a+k_n|\to 0$, so that $b-a\in \mathrm{cl}(K_{\alpha})$. It follows that $a^*b-a^*a\in \mathrm{cl}(K_{\alpha})$, and therefore that $\alpha(a^*b-a^*a)=0$. But $\alpha(a^*b)=0$, since $a\in K_{\alpha}$. Then $a(a^*a)=0$, so that $a\in K_{\alpha}$. Therefore $a\in \mathrm{cl}(K_{\alpha})$. We have now shown that $a\in K_{\alpha}$. We have $a\in K_{\alpha}$ is a strictly pure state of $a\in \mathrm{cl}(K_{\alpha})$. Therefore $a\in \mathrm{cl}(K_{\alpha})$ is a strictly pure state of $a\in \mathrm{cl}(K_{\alpha})$. Therefore $a\in \mathrm{cl}(K_{\alpha})$ is a strictly pure state of $a\in \mathrm{cl}(K_{\alpha})$. Therefore for all $a\in K_{\alpha}$. Therefore for all $a\in K_{\alpha}$. Therefore for all $a\in K_{\alpha}$.

$$|a + K_{\alpha}|_{q} \ge |a + K_{\alpha}|_{2} = |a + K_{\alpha}|_{2} \ge m|a + K_{\alpha}|_{q} = m|a + K_{\alpha}|_{q}$$

It follows that $|a + K_{\alpha}|_2$ is a complete norm on $A - K_{\alpha}$ and therefore α is strictly pure by Theorem 2.1.

3. Results concerning strictly pure states and strictly irreducible representations. The relationship between a pure state and its left kernel has never been fully explored in a general Banach *-algebra. In fact to our knowledge none of the following questions have been answered when A is a Banach algebra with hermitian involution.

Question 1. If α is a pure state of A, is K_{α} a maximal left ideal of A? Question 2. If α and β are pure states of A and $K_{\alpha} = K_{\beta}$, does $\alpha = \beta$?

Question 3. If $\alpha \in \mathcal{P}$, $M(\alpha) = 1$, and K_{α} is a maximal left ideal of A, is α a pure state of A?

We add to this list another closely related question.

Question 4. If $a \to \pi(a)$ and $a \to \gamma(a)$ are two algebraically equivalent irreducible *-representations of A on respective Hilbert spaces, are π and γ necessarily unitarily equivalent?

The answer to all these questions is affirmative when A is a B^* -algebra. In this section we deal with special cases of these questions. To begin with, Theorem 2.1 states that when α is a strictly pure state of A, then K_{α} is a modular maximal left ideal of A. This answers Question 1 in the case when α is strictly pure.

Next we prove a result which easily settles Question 2 if α or β is strictly pure. Kadison proves in [6] that when α is a pure state of a B^* -algebra, then $\mathfrak{N}(\alpha) = K_{\alpha} + K_{\alpha}^*$ where $\mathfrak{N}(\alpha)$ is the null space of α . We have the following generalization.

Proposition 3.1. If α is a strictly pure state of A, then $\Re(\alpha) = \overline{K_a + K_a^*}$

Proof. Since $M(\alpha) = 1$, then $|\alpha(a)|^2 \le \alpha(a^*a)$ for all $a \in A$. Therefore $K_a \subset A$ $\mathfrak{N}(\alpha)$, and it follows that $K_{\alpha} + K_{\alpha}^* \subset \mathfrak{N}(\alpha)$. Now we prove the reverse inclusion. By Theorem 2.1, K_a is a modular left ideal of A. Therefore there exists $u \in A$ such that $A(1-u) \subset K_a$. When $a \in \mathfrak{N}(a)$, then $a^* \in \mathfrak{N}(a)$, and $(u + K_a, a + K_a) =$ $\alpha(a^*u) = \alpha(a^*u - a^*) = 0$. Thus $u + K_{\alpha}$ is orthogonal to $a + K_{\alpha}$ in $A - K_{\alpha} = \mathcal{H}_{\alpha}$. $\pi_a(A)$ is a *-subalgebra of $\mathcal{B}(\mathcal{H}_a)$ which acts strictly irreducibly on \mathcal{H}_a . Let B be the closure of $\pi_a(A)$ in the operator norm. By the transitivity theorem [3, Théorème (2.8.3)] there exists $T \in B$, $T = T^*$, such that $T(u + K_a) = 0$ and $T(a + K_{\alpha}) = a + K_{\alpha}$. Then there exists $\{v_n\} \subset A$ such that $v_n = v_n^*$ for all n and $|\pi_{\alpha}(v_n) - T| \rightarrow 0$ where $|\cdot|$ denotes the operator norm. Therefore $|v_n(u + K_{\alpha})|_2$ $\rightarrow 0$ and $|(v_n a - a) + K_a|_2 \rightarrow 0$. Also $v_n = v_n (1 - u) + v_n u$ and $v_n (1 - u) \in K_a$ for all n. Then $|v_n + K_\alpha|_2 \to 0$, and finally $|a^*v_n + K_\alpha|_2 \to 0$. From the proof of Theorem 2.1 it follows that $||a^*v_n + K_a||_q \to 0$ and $||(v_n a - a) + K_a||_q \to 0$. Assume for the moment the * is continuous on A. There exists $\{k_n\}, \{j_n\} \subset K_a$ such that $||a^*v_n - k_n|| \to 0$ and $||(a - v_n a) - j_n|| \to 0$. Then $||a - (j_n + k_n^*)|| \le 1$ $\|v_n a - k_n^*\| + \|(a - v_n a) - j_n\| \to 0$. Therefore in this case $\Re(\alpha) = \overline{K_\alpha + K_\alpha^*}$. In the general case, let P_a be the kernel of the representation π_a . A/P_a is a semisimple Banach *-algebra. Note that $P_a \subseteq K_a \cap K_a^*$ Define α_0 on $a + P_a \in$ A/P_a by $\alpha_0(a + P_a) = \alpha(a)$. Then α_0 is a strictly pure state of A/P_a . By Johnson's theorem [5, Theorem 2] the involution on A/P_{α} is continuous. Therefore $\mathfrak{N}(\alpha_0) = \overline{K_{\alpha_0} + K_{\alpha_0}^*}$ by our previous argument. Then when $a \in \mathfrak{N}(\alpha)$, there exists $\{k_n\}$, $\{j_n\} \subset K_a$ such that $\|(a-(k_n+j_n^*))+P_a\|_a \to 0$. Then there exists

 $\{p_n\} \subset P_\alpha$ such that $||a - (k_n + p_n + j_n^*)|| \to 0$. This proves the proposition.

We are now in a position to answer Question 2 affirmatively when α is assumed to be a strictly pure state of A.

Theorem 3.2. Let α be a strictly pure state of A. Assume that $\beta \in \mathcal{P}$, $M(\beta) = 1$, and $K_{\alpha} = K_{\beta}$. Then $\alpha = \beta$.

Proof. $K_{\beta} + K_{\beta}^* \subset \mathfrak{N}(\beta)$. Therefore

$$\mathfrak{N}(\alpha) = \overline{K_{\alpha} + K_{\alpha}^*} = \overline{K_{\beta} + K_{\beta}^*} \subset \mathfrak{N}(\beta).$$

It follows that there is a scalar $\lambda > 0$ such that $\alpha = \lambda \beta$. Then $1 = M(\alpha) = \lambda M(\beta) = \lambda$.

The next theorem answers Question 4 in a special case.

Theorem 3.3. Assume that \mathcal{K} and \mathcal{K} are Hilbert spaces, and $a \to \pi(a)$ and $a \to \gamma(a)$ are strictly irreducible *-representations of A on \mathcal{K} and \mathcal{K} respectively. Then if π and γ are algebraically equivalent, then π and γ are unitarily equivalent.

Proof. By hypothesis there exists a linear operator V which maps K in a one-to-one manner onto H with the property that V^{-1} $\pi(a)$ $V = \gamma(a)$ for all $a \in A$. Take $\xi \in K$ with $\|\xi\| = 1$, and set $\alpha(a) = (\gamma(a) \xi, \xi)$ for $a \in A$. By [8, Lemma (4.5.8), p. 217] the representation γ is unitarily equivalent to π_{α} on H_{α} . Also $M(\alpha) = \|\xi\|^2 = 1$ by [4, Theorem (21.25), p. 323]. Then α is a strictly pure state of A by [4, Theorem (21.34), p. 328]. Now set $\eta = V(\xi)/\|V(\xi)\|$. Define $\beta(a) = (\pi(a) \eta, \eta)$ for all $\alpha \in A$. By the same argument as just applied to α , β is a strictly pure state of A, and π_{β} is unitarily equivalent to π . Then

$$a \in K_{\alpha} \iff \gamma(a)\xi = 0 \iff \gamma(a)(V^{-1}(\eta)) = 0$$

$$\iff V^{-1}(\pi(a)(\eta)) = 0 \iff \pi(a)\eta = 0 \iff a \in K_{\beta}.$$

Thus $K_{\alpha} = K_{\beta}$, and it follows from Theorem 3.2 that $\alpha = \beta$. Then $\pi_{\alpha} = \pi_{\beta}$, so that π and γ are unitarily equivalent.

To conclude this section we consider an answer to Question 3 when A has a very special property. We hypothesize that every maximal left ideal of A is the left kernel of a strictly pure state of A. In this case assume that α is as in Question 3, that is, $\alpha \in \mathcal{P}$, $M(\alpha) = 1$, and K_{α} is a maximal left ideal of A. By the special hypothesis on A there is a strictly pure state β of A such that $K_{\beta} = K_{\alpha}$. Then by Theorem 3.2, $\alpha = \beta$. We state this result as a proposition.

Proposition 3.4. Assume that every maximal (modular) left ideal of A is the left kernel of a strictly pure state of A. When $\alpha \in \mathcal{P}$, $M(\alpha) = 1$, and K_{α} is a maximal (modular) left ideal of A, then α is a strictly pure state of A.

4. Irreducible representations which are similar to *-representations. Let $a \to \pi(a)$ be a strictly irreducible representation (but not necessarily a *-representation) of A on a Hilbert space \mathcal{H} . If $\xi \in \mathcal{H}$, $\xi \neq 0$, then a straightforward algebraic argument proves that $K_{\xi} = \{a \in A \mid \pi(a)\xi = 0\}$ is a modular maximal left ideal of A. We show in the next theorem that when K_{ξ} is the left kernel of a strictly pure state α of A, then π is similar to a *-representation of A on \mathcal{H} .

Theorem 4.1. Let $a \to \pi(a)$ and K_{ξ} be as above. Assume that α is a strictly pure state of A with $K_{\alpha} = K_{\xi}$. Then there exists a *-representation $a \to \rho(a)$ of A on $\mathcal H$ and a positive operator $V \in \mathcal B(\mathcal H)$ such that, for all $a \in A$,

$$\pi(a) = V^{-1}\rho(a)V.$$

Proof. Since π is strictly irreducible, $a \to \pi(a)\xi$ is a linear map from A onto \mathcal{H} . We define a sesquilinear form $[\cdot,\cdot]$ on $\mathcal{H} \times \mathcal{H}$ by

$$[\pi(a)\xi, \pi(b)\xi] = \alpha(b^*a),$$

 $a, b \in A$. Whenever $c \in K_a$ and $d \in A$, then $\alpha(d^*c) = 0$. This implies that $[\cdot, \cdot]$ is well defined.

Next we prove that $[\cdot, \cdot]$ is a bounded form. By a theorem of B. E. Johnson [5, Theorem 1, p. 537] π is a continuous map of A into $\mathfrak{B}(\mathcal{H})$. If $k \in K_{\mathcal{E}}$, $a \in A$,

$$\|\pi(a)\xi\| = \|\pi(a+k)\xi\| \le \|\pi\| \|\xi\| \|a+k\|.$$

Therefore for any $a \in A$,

(1)
$$\|\pi(a)\xi\| \leq \|\pi\| \|\xi\| \|a + K_{\xi}\|_{a}.$$

Then by the Closed Graph Theorem there exists N > 0 such that, for all $a \in A$,

(2)
$$||a + K_{\varepsilon}||_{\alpha} \le N ||\pi(a)\xi||.$$

As shown in the proof of Theorem 2.1, the norms $\|\cdot\|_2$ and $\|\cdot\|_q$ are equivalent on $A-K_\alpha$. In particular there exists J>0 such that $\|a+K_\alpha\|_2 \le J\|a+K_\alpha\|_q$ for all $a\in A$. Therefore for all $a,b\in A$,

(3)
$$|\alpha(b^*a)| = |(a + K_a, b + K_a)| \le J^2 ||a + K_a||_a ||b + K_a||_a.$$

Then combining (2) and (3) we have

$$\left|\left[\pi(a)\xi,\,\pi(b)\xi\right]\right| = \left|\alpha(b^*a)\right| \leq J^2 \|a+K_a\|_q \|b+K_a\|_q \leq J^2 N^2 \|\pi(a)\xi\| \|\pi(b)\xi\|.$$

This proves that $[\cdot, \cdot]$ is bounded on $\mathcal{H} \times \mathcal{H}$.

The form $[\cdot, \cdot]$ is a symmetric, positive definite, bounded sesquilinear form on $\mathbb{H} \times \mathbb{H}$. Therefore there exists an operator $U \in \mathcal{B}(\mathbb{H})$ such that $U = U^*$, $U \ge 0$, and $[\phi, \psi] = (U\phi, \psi)$, when $\phi, \psi \in \mathbb{H}$.

By (3), for all $a \in A$,

$$(|a + K_{\alpha}|_{2})^{2} = \alpha (a*a) \leq J^{2}(||a + K_{\alpha}||_{\alpha})^{2}.$$

By the proof of Theorem 2.1 there exists P > 0 such that, for all $a \in A$,

$$\|a + K_{\alpha}\|_{q} \leq P \|a + K_{\alpha}\|_{2}$$

Given $a \in A$, set $\psi = \pi(a)\xi$. Then by (1),

$$\|\psi\| = \|\pi(a)\xi\| \le \|\pi\| \|\xi\| \|a + K_a\|_a$$

Set $M = ||\pi|| ||\xi|| P$. Then

$$\|\psi\|^2 \le M^2(|a + K_a|_2)^2 = M^2\alpha(a*a) = M^2[\psi, \psi].$$

Therefore

$$\|\psi\|^2 < M^2[\psi, \psi] = M^2(U\psi, \psi) \le M^2\|U\psi\| \|\psi\|.$$

Finally $\|\psi\| \le M^2 \|U\psi\|$, and this proves that $U^{-1} \in \mathcal{B}(\mathcal{H})$.

Now set $V=U^{\frac{1}{2}}$. Then $[\phi, \psi]=(V\phi, V\psi)$ for all $\phi, \psi \in \mathbb{H}$. Let $\rho(a)=V\pi(a)V^{-1}$, $a\in A$. Given $\psi_1, \psi_2\in \mathbb{H}$, there exists $\phi_1, \phi_2\in \mathbb{H}$ and $a_1, a_2\in A$ such that

$$\psi_i = V\phi_i$$
 and $\phi_i = \pi(a_i)\xi$, $i = 1, 2$.

Then

$$\begin{split} (\rho(a)\psi_1, \ \psi_2) &= (V\pi(a)V^{-1}V\phi_1, \ V\phi_2) \\ &= [\pi(a)\phi_1, \ \phi_2] = [\pi(a)\pi(a_1)\xi, \ \pi(a_2)\xi] \\ &= \alpha(a_2^*(aa_1)) = \alpha((a_2^*a_2)^*a_1) \\ &= [\pi(a_1)\xi, \ \pi(a^*)\pi(a_2)\xi] = [\phi_1, \ \pi(a^*)\phi_2] \\ &= (V\phi_1, \ V\pi(a^*)\phi_2) = (V\phi_1, \ V\pi(a^*)V^{-1}V\phi_2) = (\psi_1, \ \rho(a^*)\psi_2). \end{split}$$

Therefore $\rho(a^*) = \rho(a)^*$ for all $a \in A$ which completes the proof of the theorem.

Corollary 4.2. Assume that every modular maximal left ideal of A is the left kernel of a strictly pure state of A. Let $a \to \pi(a)$ be a strictly irreducible representation of A on a Hilbert space H. Then there exists a *-representation $a \to \rho(a)$ of A on H and a positive operator $V \in \mathcal{B}(H)$ such that, for all $a \in A$,

$$\pi(a) = V^{-1}\rho(a)V.$$

- 5. Some examples. When A is B^* -algebra, then A has the following two properties:
 - (I) Every pure state of A is strictly pure.
- (II) Every modular maximal left ideal of A is the left kernel of a strictly pure state of A.

Also when G is a compact topological group and $1 \le p < +\infty$, then

 $A = L^p(G)$ (or C(G), the continuous functions on G) has properties (I) and (II). Here the multiplication is, as usual, convolution. All the irreducible *-representations of A in this case are finite dimensional. In this section we present two examples of algebras which have properties (I) and (II), but which are not in general B^* -algebras, and which need not in general have any finite dimentional *-representations.

Example 5.1. Let A be a Banach algebra which is also a dense *-ideal in a B*-algebra B. Any full Hilbert algebra is a particular example of such a Banach algebra; see [1].

Assume that $a \to \pi(a)$ is an irreducible *-representation of A on a Hilbert space $\mathcal H$. Then as shown in [1, Proposition 4.1] π extends uniquely to a *-representation $b \to \widetilde{\pi}(b)$ of B on $\mathcal H$. Therefore by Kadison's theorem $\widetilde{\pi}(B)$ acts strictly irreducibly on $\mathcal H$. Since A is a dense ideal of B, $\pi(A) = \widetilde{\pi}(A)$ is a non-zero ideal in $\widetilde{\pi}(B)$. Given $\xi \in \mathcal H$, $\pi(A)\xi$ is a $\widetilde{\pi}(B)$ -invariant subspace of $\mathcal H$. Therefore $\pi(A)\xi = \mathcal H$, so that $A \to \pi(a)$ is strictly irreducible on $\mathcal H$. It follows that A has property (I).

Now assume that M is a modular maximal left ideal of A. Then there exists $u \in A$ such that $A(1-u) \subset M$. Let $N = \{b \in B | bu \in M\}$. N is a left ideal of B and $M = N \cap A$. Furthermore if $b \in B$, $b(1-u)u = bu(1-u) \in M$ since $bu \in A$. Therefore N is a proper modular left ideal of B. By [8, Theorem (4.9.8), p. 251] there exists $\widetilde{\alpha}$ a pure state of B with $N \subset K_{\widetilde{\alpha}}$. Then $M = K_{\widetilde{\alpha}} \cap A$. It follows that α , the restriction of $\widetilde{\alpha}$ to A, is a strictly pure state of A with $K_{\alpha} = M$. We have shown that A has property (II).

Example 5.2. Assume that Ω is a compact Hausdorff space and B is a B^* -algebra with identity e. Let $C(\Omega, B)$ be the algebra of all continuous B-valued functions on Ω . $C(\Omega, B)$ is a B^* -algebra with identity. Assume that A is a Banach algebra which is a *-subalgebra of $C(\Omega, B)$ containing the identity. We also assume that A has the properties:

- (1) Given $\omega \in \Omega$ and $b \in B$, there exists $f \in A$ such that $f(\omega) = b$.
- (2) $f \in A$ is left invertible in A if and only if $f(\omega)$ is invertible in B for all $\omega \in \Omega$.

We mention a specific example of such an algebra A: Let Ω be the interval $[0, 2\pi]$ with 0 and 2π identified and with the usual topology. Let B be any B^* -algebra with identity. We define A to be the algebra of all functions of the form

$$f(t) = \sum_{n = -\infty}^{+\infty} a_n e^{int}$$

where $t \in \Omega$ and $\{a_n\}$ is any sequence in B such that $\sum_{n=-\infty}^{+\infty} \|a_n\| < +\infty$. When $f(t) = \sum_{n=-\infty}^{+\infty} a_n e^{int}$, let $\|f\| = \sum_{n=-\infty}^{+\infty} \|a_n\|$. The algebra A is discussed by

Bochner and Phillips in [2]. That A has property (2) above is the assertion of [2, Theorem 1, p. 409]. The rest of the required properties of A are easily verified.

Now assume that A is any Banach *-subalgebra of $C(\Omega, B)$ which contains the identity and satisfies (1) and (2). When $\omega \in \Omega$ and N is a maximal left ideal of B, we define

$$K(\omega, N) = \{ f \in A \mid f(\omega) \in N \}.$$

It is not difficult to see that $K(\omega, N)$ is a maximal left ideal of A. We prove the converse of this. Assume that M is a maximal left ideal of A. For any $\omega \in \Omega$, $M(\omega) = \{f(\omega) \mid f \in M\}$ is a left ideal of B. Suppose that $M(\omega) = B$ for all $\omega \in \Omega$. Then for each $\omega \in \Omega$, we can choose a function $g_{\omega} \in M$ such that $g_{\omega}(\omega) = e$. Therefore there exists an open set U_{ω} in Ω such that $\omega \in U_{\omega}$ and $g_{\omega}(y)$ is invertible in B for all $y \in U_{\omega}$. Then $(g_{\omega}^* g_{\omega})(y)$ is invertible in B for all $y \in U_{\omega}$. Choose a finite cover $U_{\omega_1}, \dots, U_{\omega_n}$ for Ω . Set $f = \sum_{k=1}^n g_{\omega_k}^* g_{\omega_k} \in M$. When $b_k \in B$, $b_k \geq 0$, $1 \leq k \leq n$, and b_j is invertible for some j, then $b_1 + \dots + b_n$ is invertible (this is easy to verify when the b_k are positive operators on a Hilbert space, since the lower bound of the numerical range of the sum $b_1 + \dots + b_n$ is greater or equal to the lower bound of the numerical range of b_j . But then for all $y \in \Omega$, f(y) is invertible in B. By (2), f is then invertible in A, which contradicts the fact that $f \in M$. It follows that for some $\omega \in \Omega$, $M(\omega)$ is a proper left ideal of B. Then there exists a maximal left ideal of B such that $M(\omega) \subset N$. Therefore $M \subset K(\omega, N)$, so that $M = K(\omega, N)$ by the assumption that M is maximal.

Given M a maximal left ideal of A, then as we have shown above $M = K(\omega, N)$ for some $\omega \in \Omega$ and some maximal left ideal N of B. Choose β a pure state of B such that $K_{\beta} = N$. Define α on A by $\alpha(f) = \beta(f(\omega))$, $f \in A$. Then $K_{\alpha} = K(\omega, N) = M$. It is easy to verify that the norm $|f + K_{\alpha}|_2 = \alpha(f^*f)^{\frac{1}{2}}$ is a complete norm on $A - K_{\alpha}$. Therefore α is a strictly pure state of A. This proves that A has property (II).

Now assume that α is a pure state of A. Then by [3, Lemma 2.10.1, p. 50] α has an extension to a pure state β of $C(\Omega, B)$. By [7, Corollary, p. 337] there exists a point $\omega \in \Omega$ and a maximal left ideal N of B such that $K_{\beta} = \{f \in C(\Omega, B) | f(\omega) \in N\}$. Therefore $K_{\alpha} = K_{\beta} \cap A = K(\omega, N)$. It follows that α is a strictly pure state of A by Proposition 3.4. Therefore A has property (I).

REFERENCES

^{1.} B. A. Barnes, Banach algebras which are ideals in a Banach algebra, Pacific J. Math. 38 (1971), 1-7.

^{2.} S. Bochner and R. S. Phillips, Absolutely convergent Fourier expansions for non-commutative normed rings, Ann. of Math. (2) 43 (1942), 409-418. MR 4, 218.

- 3. J. Dixmier, Les C*-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404.
- 4. E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #158.
- 5. B. E. Johnson, The uniqueness of the (complete) norm topology, Bull. Amer. Math. Soc. 73 (1967), 537-539. MR 35 #2142.
- 6. R. V. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 273-276. MR 19, 47.
- 7. M. A. Naimark, Normed rings, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, 1959. MR 19, 870; MR 22 #1824.
- 8. C. E. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #5903.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403